Patents and Publications

Patents

TRTs intellectual property estate covers the Company's TXP cellular therapy products, the source and highly effective processes for their extraction, production, and characterization, for the wide range of applications for which they are being developed. The intellectual property estate includes four major patent groups represented by over 80 issued and pending patents providing long term commercial protection of the technology in all major worldwide markets. A current schedule of the entire patent estate is available for qualified requests.

Selected Articles

TRT-Related Publications

  1. Holley RJ, Tai G, Williamson AJ, Taylor S, Cain SA, Richardson SM, Merry CL, Whetton AD, Kielty CM, Canfield AE. (2015) Comparative quantification of the surfaceome of human multipotent mesenchymal progenitor cells. Stem Cell Reports. 4(3):473-88.
  2. Gomez-Aristizabal A, & Davies JE. (2013) The effects of human umbilical cord perivascular cells on rat hepatocyte structure and functional polarity. Biochemistry and Cell Biology = Biochimie Et Biologie Cellulaire, 91(3):140-147.
  3. Yannarelli G, Pacienza N, Cuniberti L, Medin J, Davies J, & Keating A. (2013) Brief report: The potential role of epigenetics on multipotent cell differentiation capacity of mesenchymal stromal cells. Stem Cells (Dayton, Ohio), 31(1):215-220.
  4. Gomez-Aristizabal A, & Davies JE. (2012) Human umbilical cord perivascular cells improve rat hepatocyte function ex vivo. Tissue Engineering.Part A, 18(23-24):2487-2496.
  5. Gómez-Aristizábal A, Ng C, Ng J, Davies JE. (2012) Effects of two mesenchymal cell populations on hepatocytes and lymphocytes. Liver Transpl. 18(11):1384-94.
  6. Emrani H and Davies JE (2011) Umbilical Cord Perivascular Cells: A Mesenchymal Cell Source for Treatment of Tendon Injuries. The Open Tissue Engineering and Regenerative Medicine Journal. 4:112-119.
  7. Zebardast N, Lickorish D, Davies JE. (2010) Human umbilical cord perivascular cells (HUCPVC): A mesenchymal cell source for dermal wound healing. Organogenesis. 6(4):197-203.
  8. Gómez-Aristizábal A, Keating A, Davies JE. (2009) Mesenchymal stromal cells as supportive cells for hepatocytes. Mol Ther. 17(9):1504-8.
  9. Sarugaser R, Hanoun L, Keating A, Stanford WL, Davies JE (2009) Human Mesenchymal Stem Cells Self-Renew and Differentiate According to a Deterministic Hierarchy. PLoS ONE 4(8):e6498.
  10. Sarugaser R, Ennis J, Stanford WL, Davies JE. (2009) Isolation, Propagation, and Characterization of Human Umbilical Cord Perivascular Cells (HUCPVCs). Methods Mol Biol. 482:269-79.
  11. Ennis J, Götherström C, Le Blanc K, Davies JE. (2008) In vitro immunologic properties of human umbilical cord perivascular cells. Cytotherapy. 10(2):174-81.
  12. Ennis J, Sarugaser R, Gomez A, Baksh D, Davies JE. (2008) Isolation, characterization, and differentiation of human umbilical cord perivascular cells (HUCPVCs).Methods Cell Biol. 86:121-36.
  13. Turner NJ, Jones HS, Davies JE, Canfield AE. (2008) Cyclic stretch-induced TGFbeta1/Smad signaling inhibits adipogenesis in umbilical cord progenitor cells. Biochem Biophys Res Commun. 377:1147-51.
  14. Baksh D, Yao R, Tuan RS. (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells, 25(6):1384-92.
  15. Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE. (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors.Stem Cells. 23(2):220-9.

Other HUCPVC-Related Publications

  1. An B, Na S, Lee S, Kim WJ, Yang SR, Woo HM, Kook S, Hong Y, Song H, Hong SH. (2015) Non-enzymatic isolation followed by supplementation of basic fibroblast growth factor improves proliferation, clonogenic capacity and SSEA-4 expression of perivascular cells from human umbilical cord. Cell Tissue Res, 359(3):767-77.
  2. Bayo J, Fiore E, Aquino JB, Malvicini M, Rizzo M, Peixoto E, Alaniz L, Piccioni F, Bolontrade M, Podhajcer O, Garcia MG, Mazzolini G. (2014). Human umbilical cord perivascular cells exhibited enhanced migration capacity towards hepatocellular carcinoma in comparison with bone marrow mesenchymal stromal cells: A role for autocrine motility factor receptor. BioMed Research International, 2014:837420. PMID:25147818
  3. Pires AO, Neves-Carvalho A, Sousa N, Salgado AJ. (2014) The secretome of bone marrow and Wharton jelly derived mesenchymal stem cells induces differentiation and neurite outgrowth in SH-SY5Y cells. Stem Cells International, 2014:438352. PMID:25132857
  4. Teixeira FG, Carvalho MM, Neves-Carvalho A, Panchalingam KM, Behie LA, Pinto L, Sousa N, Salgado AJ (2014) Secretome of mesenchymal progenitors from the umbilical cord acts as modulator of neural/glial proliferation and differentiation. Stem Cell Rev, Nov 25 PMID:25420577
  5. Tsang WP, Shu Y, Kwok PL, Zhang F, Lee KK, Tang MK, et al. (2013) CD146+ human umbilical cord perivascular cells maintain stemness under hypoxia and as a cell source for skeletal regeneration. PloS One, 8(10):e76153.
  6. Yannarelli G, Dayan V, Pacienza N, Lee CJ, Medin J, Keating A. (2013) Human umbilical cord perivascular cells exhibit enhanced cardiomyocyte reprogramming and cardiac function after experimental acute myocardial infarction. Cell Transplantation 22(9):1651-1666.
  7. Chen E, Tang MK, Yao Y, Yau WW, Lo LM, Yang X, Chui YL, Chan J, Lee KKH. (2013) Silencing BRE expression in human umbilical cord perivascular (HUCPV) progenitor cells accelerates osteogenic and chondrogenic differentiation. PloS One, 8(7), e67896.
  8. Hong SH, Maghen L, Kenigsberg S, Teichert AM, Rammeloo AW, Shlush E, Szaraz P, Pereira S, Lulat A, Xiao R, Yie SM, Gauthier-Fisher A, Librach CL. (2013) Ontogeny of human umbilical cord perivascular cells: molecular and fate potential changes during gestation. Stem Cells Dev. 22(17):2425-39.
  9. Fraga JS, Silva NA, Lourenco AS, Goncalves V, Neves NM, Reis RL, Rodrigues Aj, Manadas B, Sousa N, Salgado AJ (2013) Unveiling the effects of the secretome of mesenchymal progenitors from the umbilical cord in different neuronal cell populations. Biochimie, 95(12):2297-2303.
  10. Ribeiro CA, Fraga JS, Gräos M, Neves NM, Reis RL, Gimble JM, Sousa N, Salgado AJ. (2012) The secretome of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations. Stem Cell Res, 3(3):18 PMID:22551705
  11. Shohara R, Yamamoto A, Takikawa S, Iwase A, Hibi H, Kikkawa F, Ueda M. (2012) Mesenchymal stromal cells of human umbilical cord Wharton's jelly accelerate wound healing by paracrine mechanisms. Cytotherapy, 14(10):1171-1181.
  12. Carvalho MM, Teixeira FG, Reis RL, Sousa N, Salgado AJ. (2011) Mesenchymal stem cells in the umbilical cord: phenotypic characterization, secretome and applications in central nervous system regenerative medicine. Curr Stem Cell Res Ther. 6(3):221-8.
  13. Salgado AJ, Fraga JS, Mesquita, AR, Neves NM, Reis RL, Sousa N. (2010) Role of human umbilical cord mesenchymal progenitors conditioned media in neuronal/glial cell densities, viability, and proliferation. Stem Cells and Development, 19(7):1067-1074.