??

Publications

Patents - HUCPVC Technologies

  1. US  7,547,546  (2009). Progenitor cells from Wharton's jelly of human umbilical cord.
  2. AU 2004210891. Progenitor cells from Wharton's jelly of human umbilical cord.
  3. WO/2007/128115. Immune privileged and modulatory progenitor cells.
  4. WO/2007/071048. Viable cells from frozen umbilical cord tissue.
  5. WO/2004/072273. Progenitor cells from Wharton's jelly of human umbilical cord.

Selected Articles - HUCPVC Technologies

  1. Emrani H and Davies JE Umbilical Cord Perivascular Cells: A Mesenchymal Cell Source for Treatment of Tendon Injuries. The Open Tissue Engineering and Regenerative Medicine Journal. 2011, 4, 112-119.
  2. Zebardast N, Lickorish D, Davies JE. Human umbilical cord perivascular cells (HUCPVC): A mesenchymal cell source for dermal wound healing. Organogenesis. 2010 Oct-Dec;6(4):197-203.
  3. Sarugaser R, Hanoun L, Keating A, Stanford WL, Davies JE Human Mesenchymal Stem Cells Self-Renew and Differentiate According to a Deterministic Hierarchy. PLoS ONE 2009,4(8): e6498. doi:10.1371/journal.pone.0006498
  4. Sarugaser R, Ennis J, Stanford WL, Davies JE. Isolation, Propagation, and Characterization of Human Umbilical Cord Perivascular Cells (HUCPVCs). Methods Mol Biol. 2009;482:269-79.
  5. Ennis J, Götherström C, Le Blanc K, Davies JE. In vitro immunologic properties of human umbilical cord perivascular cells. Cytotherapy. 2008;10(2):174-81.
  6. Ennis J, Sarugaser R, Gomez A, Baksh D, Davies JE. Isolation, characterization, and differentiation of human umbilical cord perivascular cells (HUCPVCs).Methods Cell Biol. 2008;86:121-36.
  7. Turner NJ, Jones HS, Davies JE, Canfield AE. Cyclic stretch-induced TGFbeta1/Smad signaling inhibits adipogenesis in umbilical cord progenitor cells. Biochem Biophys Res Commun. 2008;377:1147-51.
  8. Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE. Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors.Stem Cells. 2005 Feb;23(2):220-9.

Patents - OsteoScaf

  1. WO 2011035428A1  (2011). Porous materials coated with calcium phosphate and methods of fabrication thereof.
  2. US  7,022,522  (2006). Macroporous polymer scaffold containing calcium phosphate particles.
  3. US  6,875,442  (2005). Process for growing tissue in a biocompatible macroporous polymer scaffold and products therefrom.
  4. US  6,472,210  (2002). Polymer scaffold having microporous polymer struts defining interconnected macropores.
  5. US  6,379,962  (2002). Polymer scaffold having microporous polymer struts defining interconnected macropores.
  6. EP 1030697B1  (2003). Biodegradable polymer scaffold.

Selected Articles - OsteoScaf

  1. Kuzyk PR, Schemitsch EH, Davies JE.A biodegradable scaffold for the treatment of a diaphyseal bone defect of the tibia. J Orthop Res. 2010 Apr;28(4):474-80.
  2. Davies JE, Matta R, Mendes VC and Perri de Carvalho PS. Development, characterization and clinical use of a biodegradable composite scaffold for bone engineering in oro-maxillo-facial surgery. Organogenesis. 2010 July/August/September;6(3):1-6
  3. Lickorish D, Guan L, Davies JE. A three-phase, fully resorbable, polyester/calcium phosphate scaffold for bone tissue engineering: Evolution of scaffold design. Biomaterials. 2007 Mar;28(8):1495-502
  4. Guan L, Davies JE. Preparation and characterization of a highly macroporous biodegradable composite tissue engineering scaffold. J Biomed Mater Res A. 2004 Dec 1;71(3):480-7
  5. Gomi K, Kanazashi M, Lickorish D, Arai T, Davies JE. Bone marrow genesis after subcutaneous delivery of rat osteogenic cell-seeded biodegradable scaffolds into nude mice. J Biomed Mater Res A. 2004 Dec 15;71(4):602-7.
  6. Karp JM, Sarraf F, Shoichet MS, Davies JE. Fibrin-filled scaffolds for bone-tissue engineering: An in vivo study. J Biomed Mater Res A. 2004 Oct 1;71(1):162-71.
  7. Lickorish D, Chan J, Song J, Davies JE An in-vivo model to interrogate the transition from acute to chronic inflammation. Eur Cell Mater. 2004 Sep 13;8:12-9.
  8. Fialkov JA, Holy CE, Shoichet MS, Davies JE. In vivo bone engineering in a rabbit femur. J Craniofac Surg. 2003 May;14(3):324-32.
  9. Karp JM, Rzeszutek K, Shoichet MS, Davies JE. Fabrication of precise cylindrical three-dimensional tissue engineering scaffolds for in vitro and in vivo bone engineering applications. J Craniofac Surg. 2003 May;14(3):317-23.
  10. Holy CE, Fialkov JA, Davies JE, Shoichet MS. Use of a biomimetic strategy to engineer bone.J Biomed Mater Res A. 2003 Jun 15;65(4):447-53.
  11. Karp JM, Shoichet MS, Davies JE. Bone formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro.J Biomed Mater Res A. 2003 Feb 1;64(2):388-96.
  12. Holy CE, Cheng C, Davies JE, Shoichet MS. Optimizing the sterilization of PLGA scaffolds for use in tissue engineering.Biomaterials. 2001 Jan;22(1):25-31.
  13. Holy CE, Shoichet MS, Davies JE. Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period.J Biomed Mater Res. 2000 Sep 5;51(3):376-82
  14. Holy CE, Dang SM, Davies JE, Shoichet MS. In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam.Biomaterials. 1999 Jul;20(13):1177-85.